RI Study Post Blog Editor

ALL MACHINE LEARNING ALGORITHMS – COMPLETE LIST

1️⃣ Supervised Learning Algorithms

🔹 Regression Algorithms

  1. Linear Regression

  2. Multiple Linear Regression

  3. Polynomial Regression

  4. Ridge Regression (L2)

  5. Lasso Regression (L1)

  6. Elastic Net Regression

  7. Bayesian Linear Regression

  8. Quantile Regression

  9. Support Vector Regression (SVR)

  10. Decision Tree Regression

  11. Random Forest Regression

  12. Gradient Boosting Regression

  13. XGBoost Regression

  14. LightGBM Regression

  15. CatBoost Regression

  16. AdaBoost Regression

  17. Extra Trees Regression


🔹 Classification Algorithms

  1. Logistic Regression

  2. K-Nearest Neighbors (KNN)

  3. Naive Bayes

  • Gaussian NB

  • Multinomial NB

  • Bernoulli NB

  1. Decision Tree Classifier

  2. Random Forest Classifier

  3. Support Vector Machine (SVM)

  4. Gradient Boosting Classifier

  5. AdaBoost Classifier

  6. XGBoost Classifier

  7. LightGBM Classifier

  8. CatBoost Classifier

  9. Extra Trees Classifier

  10. Linear Discriminant Analysis (LDA)

  11. Quadratic Discriminant Analysis (QDA)

  12. Perceptron

  13. Passive Aggressive Classifier


2️⃣ Unsupervised Learning Algorithms

🔹 Clustering

  1. K-Means

  2. K-Medoids

  3. Hierarchical Clustering

  • Agglomerative

  • Divisive

  1. DBSCAN

  2. HDBSCAN

  3. Mean Shift

  4. OPTICS

  5. BIRCH

  6. Spectral Clustering

  7. Affinity Propagation

  8. Fuzzy C-Means


🔹 Dimensionality Reduction

  1. Principal Component Analysis (PCA)

  2. Kernel PCA

  3. Linear Discriminant Analysis (LDA)*

  4. Independent Component Analysis (ICA)

  5. t-SNE

  6. UMAP

  7. Autoencoders

  8. Truncated SVD

  9. Factor Analysis

  10. Isomap

  11. Locally Linear Embedding (LLE)

*LDA can be supervised or unsupervised depending on use.


🔹 Association Rule Learning

  1. Apriori

  2. Eclat

  3. FP-Growth


🔹 Anomaly / Outlier Detection

  1. Isolation Forest

  2. One-Class SVM

  3. Local Outlier Factor (LOF)

  4. Elliptic Envelope

  5. HBOS

  6. Autoencoder-based Anomaly Detection


3️⃣ Semi-Supervised Learning Algorithms

  1. Self-Training

  2. Co-Training

  3. Label Propagation

  4. Label Spreading

  5. Pseudo-Labeling

  6. Graph-Based Semi-Supervised Learning


4️⃣ Reinforcement Learning Algorithms

🔹 Value-Based

  1. Q-Learning

  2. SARSA

  3. Deep Q Network (DQN)

  4. Double DQN

  5. Dueling DQN


🔹 Policy-Based

  1. REINFORCE

  2. Policy Gradient

  3. Proximal Policy Optimization (PPO)

  4. Trust Region Policy Optimization (TRPO)


🔹 Actor–Critic

  1. A2C

  2. A3C

  3. DDPG

  4. TD3

  5. SAC


5️⃣ Deep Learning Algorithms

🔹 Neural Networks

  1. Artificial Neural Network (ANN)

  2. Deep Neural Network (DNN)

  3. Convolutional Neural Network (CNN)

  4. Recurrent Neural Network (RNN)

  5. LSTM

  6. GRU


🔹 Advanced Deep Learning

  1. Autoencoders

  2. Variational Autoencoders (VAE)

  3. Generative Adversarial Networks (GAN)

  4. Deep Belief Networks (DBN)

  5. Transformers

  6. Vision Transformers (ViT)

  7. Graph Neural Networks (GNN)


6️⃣ Time Series Algorithms

  1. ARIMA

  2. SARIMA

  3. SARIMAX

  4. Holt-Winters

  5. Exponential Smoothing

  6. Prophet

  7. LSTM for Time Series

  8. Temporal Convolutional Networks (TCN)


7️⃣ Probabilistic & Bayesian Models

  1. Hidden Markov Models (HMM)

  2. Bayesian Networks

  3. Gaussian Processes

  4. Markov Chain Monte Carlo (MCMC)

  5. Conditional Random Fields (CRF)


8️⃣ Evolutionary & Optimization Algorithms

  1. Genetic Algorithm

  2. Genetic Programming

  3. Differential Evolution

  4. Particle Swarm Optimization

  5. Ant Colony Optimization

  6. Simulated Annealing


9️⃣ Online / Incremental Learning

  1. Stochastic Gradient Descent (SGD)

  2. Hoeffding Tree

  3. Online Naive Bayes

  4. Passive-Aggressive Algorithms


🔟 AutoML & Meta-Learning

  1. AutoML

  2. Neural Architecture Search (NAS)

  3. Meta-Learning

  4. Few-Shot Learning

  5. Transfer Learning


🎯 Interview Tip (Very Important)

You are NOT expected to know internals of all algorithms.

Interviewers usually test:

  • Linear / Logistic Regression

  • Decision Trees

  • Random Forest

  • XGBoost

  • SVM

  • K-Means

  • PCA

  • Neural Networks basics

Previous Post Next Post