1️⃣ Supervised Learning Algorithms
🔹 Regression Algorithms
-
Linear Regression
-
Multiple Linear Regression
-
Polynomial Regression
-
Ridge Regression (L2)
-
Lasso Regression (L1)
-
Elastic Net Regression
-
Bayesian Linear Regression
-
Quantile Regression
-
Support Vector Regression (SVR)
-
Decision Tree Regression
-
Random Forest Regression
-
Gradient Boosting Regression
-
XGBoost Regression
-
LightGBM Regression
-
CatBoost Regression
-
AdaBoost Regression
-
Extra Trees Regression
🔹 Classification Algorithms
-
Logistic Regression
-
K-Nearest Neighbors (KNN)
-
Naive Bayes
-
Gaussian NB
-
Multinomial NB
-
Bernoulli NB
-
Decision Tree Classifier
-
Random Forest Classifier
-
Support Vector Machine (SVM)
-
Gradient Boosting Classifier
-
AdaBoost Classifier
-
XGBoost Classifier
-
LightGBM Classifier
-
CatBoost Classifier
-
Extra Trees Classifier
-
Linear Discriminant Analysis (LDA)
-
Quadratic Discriminant Analysis (QDA)
-
Perceptron
-
Passive Aggressive Classifier
2️⃣ Unsupervised Learning Algorithms
🔹 Clustering
-
K-Means
-
K-Medoids
-
Hierarchical Clustering
-
Agglomerative
-
Divisive
-
DBSCAN
-
HDBSCAN
-
Mean Shift
-
OPTICS
-
BIRCH
-
Spectral Clustering
-
Affinity Propagation
-
Fuzzy C-Means
🔹 Dimensionality Reduction
-
Principal Component Analysis (PCA)
-
Kernel PCA
-
Linear Discriminant Analysis (LDA)*
-
Independent Component Analysis (ICA)
-
t-SNE
-
UMAP
-
Autoencoders
-
Truncated SVD
-
Factor Analysis
-
Isomap
-
Locally Linear Embedding (LLE)
*LDA can be supervised or unsupervised depending on use.
🔹 Association Rule Learning
-
Apriori
-
Eclat
-
FP-Growth
🔹 Anomaly / Outlier Detection
-
Isolation Forest
-
One-Class SVM
-
Local Outlier Factor (LOF)
-
Elliptic Envelope
-
HBOS
-
Autoencoder-based Anomaly Detection
3️⃣ Semi-Supervised Learning Algorithms
-
Self-Training
-
Co-Training
-
Label Propagation
-
Label Spreading
-
Pseudo-Labeling
-
Graph-Based Semi-Supervised Learning
4️⃣ Reinforcement Learning Algorithms
🔹 Value-Based
-
Q-Learning
-
SARSA
-
Deep Q Network (DQN)
-
Double DQN
-
Dueling DQN
🔹 Policy-Based
-
REINFORCE
-
Policy Gradient
-
Proximal Policy Optimization (PPO)
-
Trust Region Policy Optimization (TRPO)
🔹 Actor–Critic
-
A2C
-
A3C
-
DDPG
-
TD3
-
SAC
5️⃣ Deep Learning Algorithms
🔹 Neural Networks
-
Artificial Neural Network (ANN)
-
Deep Neural Network (DNN)
-
Convolutional Neural Network (CNN)
-
Recurrent Neural Network (RNN)
-
LSTM
-
GRU
🔹 Advanced Deep Learning
-
Autoencoders
-
Variational Autoencoders (VAE)
-
Generative Adversarial Networks (GAN)
-
Deep Belief Networks (DBN)
-
Transformers
-
Vision Transformers (ViT)
-
Graph Neural Networks (GNN)
6️⃣ Time Series Algorithms
-
ARIMA
-
SARIMA
-
SARIMAX
-
Holt-Winters
-
Exponential Smoothing
-
Prophet
-
LSTM for Time Series
-
Temporal Convolutional Networks (TCN)
7️⃣ Probabilistic & Bayesian Models
-
Hidden Markov Models (HMM)
-
Bayesian Networks
-
Gaussian Processes
-
Markov Chain Monte Carlo (MCMC)
-
Conditional Random Fields (CRF)
8️⃣ Evolutionary & Optimization Algorithms
-
Genetic Algorithm
-
Genetic Programming
-
Differential Evolution
-
Particle Swarm Optimization
-
Ant Colony Optimization
-
Simulated Annealing
9️⃣ Online / Incremental Learning
-
Stochastic Gradient Descent (SGD)
-
Hoeffding Tree
-
Online Naive Bayes
-
Passive-Aggressive Algorithms
🔟 AutoML & Meta-Learning
-
AutoML
-
Neural Architecture Search (NAS)
-
Meta-Learning
-
Few-Shot Learning
-
Transfer Learning
🎯 Interview Tip (Very Important)
You are NOT expected to know internals of all algorithms.
Interviewers usually test:
-
Linear / Logistic Regression
-
Decision Trees
-
Random Forest
-
XGBoost
-
SVM
-
K-Means
-
PCA
-
Neural Networks basics